Welcome to my corner on the web! My name is Ignas Bukys and I am excited to share my thoughts, experiences, and insights with you.
On this blog, you will find a diverse range of topics including technology and programming. All my projects (ongoing & finished) are listed here.
Whether you are here for personal growth, to learn something new, or simply to be entertained, I hope you find value in what I have to share. Thank you for stopping by and I hope you enjoy your visit.
As an active cyclist, I'm always looking how to enhace my rides. One of the option is to have navigation available. You plan route in advance and you just execute it on the road. For this reason I was looking for bicycle computer, that would have GPS and could lead me on the road. Basicly, there are two ways how navigation could be executed: just breadcrumb of your path and highlighted path on maps. Having offline maps in liquid screen display was tempting. After some research I've decided to try XOSS company NAV+ device as my bicycle computer.
The XOSS NAV+ arrived in a well-packaged box, including mounts, a USB-C charging cable, and the main unit. The device uses Garmin-type mounts for easy attachment. Pairing with the mobile app was straightforward, and I also purchased additional accessories like a protective case and compatible sensors for speed and cadence, which were easy to set up.
I've rode few 100's kilometer before writing this review, so everything is from my experience.
While there are several software-related issues that could be improved, the XOSS NAV+ is a solid and budget-friendly choice for cyclists. It may not match high-end Garmin or Hammerhead models, but for €60, it adds significant value to your rides. Considering its features and performance, I would rate it 6/10.
MicroPython is a straightforward and effective Python version created for microcontrollers and other devices with limited resources. One of MicroPython's key features is the ability to execute Python code that has been precompiled to bytecode, which can help the interpreter operate better and consume less memory.
Mpy-cross is one of the programs that is most frequently used to precompile Python code for MicroPython. With the help of this command-line utility, Python code created in a MicroPython program can be translated into bytecode that can be run on a device that supports MicroPython. iteration 6 of mpy-cross is the most recent iteration. This version has bug fixes and additional features.The main feature of this version is that it supports the latest version of MicroPython and it includes a new option to control the optimization level of the generated bytecode, which can help to reduce the size of the generated code and improve performance.
Another feature is that it now supports the compilation of Python modules, which can be used to improve the performance of the interpreter and reduce the amount of memory used by the program. Additionally, mpy-cross can be used to create standalone MicroPython executables that can be run on devices without a full MicroPython installation.
Using mpy-cross is very simple. Once you have installed the tool, you can use it to convert Python code into bytecode by running the following command:
mpy-cross myfile.py
Full information about its capabilities is available in help text bellow:
usage: mpy-cross-6.exe [<opts>] [-X <implopt>] <input filename> Options: --version : show version information -o : output file for compiled bytecode (defaults to input with .mpy extension) -s : source filename to embed in the compiled bytecode (defaults to input file) -v : verbose (trace various operations); can be multiple -O[N] : apply bytecode optimizations of level N Target specific options: -msmall-int-bits=number : set the maximum bits used to encode a small-int -march=<arch> : set architecture for native emitter; x86, x64, armv6, armv6m, armv7m, armv7em, armv7emsp, armv7emdp, xtensa, xtensawin Implementation specific options: emit={bytecode,native,viper} -- set the default code emitter heapsize=<n> -- set the heap size for the GC (default 2097152)
In addition to the performance benefits, mpy-cross is also a useful tool when working with MicroPython scripts that are short on RAM memory. When running a MicroPython script, the interpreter must load the entire script into memory in order to execute it. This can be a problem for devices with limited RAM, as it may not be able to load large or complex scripts.
By precompiling the script using mpy-cross, the size of the script is reduced, which means that less memory is required to load and execute the script. This can be particularly beneficial when working with memory-constrained devices, such as those with limited RAM or flash storage.
For example, if you have a script that is using up all of the available RAM on your device, you can use mpy-cross to precompile the script and see if that reduces the amount of memory used by the script. You can also use the new option to control the optimization level of the generated bytecode, which can further help to reduce the size of the generated code and improve performance.
In summary, mpy-cross is a valuable tool for MicroPython developers working with memory-constrained devices. By precompiling Python scripts into bytecode, it can help to reduce the amount of memory required to load and execute the script, which can improve the performance of the device and enable the execution of more complex scripts.
The -O option is a command-line switch that can be used when running mpy-cross to control the level of optimization that is applied to the generated bytecode. When using this option, you can specify a numerical value from 0 to 3, with 0 indicating no optimization and 3 indicating the highest level of optimization.
The higher the optimization level, the more aggressive the optimization will be. At level 3, the mpy-cross will try to make the code as small as possible and run as fast as possible, but this may increase the compilation time.
The optimization level can have a significant impact on the size and performance of the generated bytecode. For example, at level 0, the generated bytecode will be larger and may run slower, while at level 3, the generated bytecode will be smaller and may run faster.
The default optimization level is -O2, which provides a good balance between code size and performance. If you are working with a device that has limited flash storage and/or RAM, you may want to try using a higher optimization level, such as -O3, to reduce the size of the generated bytecode.
It's worth noting that when you are using mpy-cross to compile modules, the -O option applies only to the module and not to the whole project.
In summary, the -O option in mpy-cross is used to control the level of optimization that is applied to the generated bytecode. By specifying a numerical value from 0 to 3, you can determine how aggressive the optimization should be and make trade-offs between code size and performance. Keep in mind that the default optimization level is -O2, which provides a good balance between code size and performance, and if you are working with a memory-constrained device, you may want to try using a higher optimization level to reduce the size of the generated bytecode.
If you want to share your thoughts, ideas, or business with the world, setting up your own website is a great way to do it. While there are many hosting options available, hosting your website from home can be a cost-effective and convenient solution. By following these steps, you can set up a local network and host your own website with a few simple tools and some basic technical know-how.
Before you get started, you will need to make sure you have the right hardware in place. Here are the basic requirements for hosting a website at home:
A computer: This will be the server that hosts your website. It needs to be stable, reliable, and connected to the internet via a wired or wireless connection. Ideally, you should choose a computer with a fast processor and plenty of storage to ensure that your website can handle a large number of visitors. In most cases, any Raspberry Pi single board computer should be OK for entry stile website-blog.
A router: This device creates a local network, allowing multiple devices to connect to the internet and communicate with each other. There are many different router options available, ranging from basic models to more advanced ones with additional features such as parental controls and guest networking.
A domain name: This is the unique address that people will use to access your website on the internet. You can purchase a domain name from a registrar, such as GoDaddy or Namecheap. Choose a domain name that is easy to remember and reflects the content of your website.
A domain name is a unique address that people use to access your website on the internet. It acts as a human-readable label for your website's IP address, which is a series of numbers that identifies your server on the internet.
There are several reasons why a domain name is required when hosting a website:
Overall, a domain name is an important investment for any website owner. It helps establish your online presence and makes it easier for people to find and access your website.
You have to take care of security very seriously, as you are opening access to wide world. Having default passwords and insecure software leaves you and your server vulnerable.
To create a local network, you will need to connect your router to your modem and configure it according to the manufacturer's instructions. This typically involves accessing the router's web-based configuration page and entering your network name (also known as the SSID) and password.
You may also need to configure additional settings, such as the type of encryption used to secure your network or the frequency of your wireless signal. Consult your router's documentation or online resources for specific instructions.
In order for your website to be accessible from the internet, you will need to assign a static IP address to your server. This will ensure that your website can be found at the same address every time someone tries to access it.
To assign a static IP address, you will need to access your server's network settings and specify a fixed IP address. This may vary depending on your operating system. On a Windows computer, you can assign a static IP address by going to “Control Panel” > “Network and Internet” > “Network and Sharing Center” > “Change Adapter Settings” > “Properties” > “Internet Protocol Version 4 (TCP/IPv4)” > “Properties” > “Use the following IP address.” On a Mac, you can assign a static IP address by going to “System Preferences” > “Network” > “Advanced” > “TCP/IP” > “Configure IPv4” > “Manually.”
Most routers have a built-in firewall to help protect your network from external threats. You will need to configure your firewall to allow incoming connections to your website. This typically involves creating a “firewall rule” that allows traffic on a specific port to pass through the firewall.
In addition to configuring your firewall, you will also need to set up port forwarding, which directs traffic from the internet to your server's IP address. This is typically done through the router's web-based configuration page, where you can specify the port number and the local IP address of your server.
For example, if you are using Apache as your web server software and want to host your website on port 80, you would create a firewall rule that allows incoming traffic on port 80 and set up port forwarding to direct traffic on port 80 to your server's IP address.
There are many different options for web server software, including Apache, NGINX or LightTPD. Once you have chosen a web server, you will need to install and configure it according to the manufacturer's instructions.
Depending on your web server software, you may need to create a virtual host configuration file, which specifies the domain name and document root of your website. You will also need to place your website's files in the appropriate directory on your computer.
Once you have set up your web server and configured your router and firewall, you should be able to access your website from a browser on a device connected to your local network. You can also use a tool like “What's My IP” to verify that your website is accessible from the internet.
Remember to keep your router and computer secure by using strong passwords and keeping your software up to date. With a little bit of planning and setup, you can easily host your own website from the comfort of your own home.